Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Radiol Artif Intell ; 4(4): e210217, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1968372

ABSTRACT

Purpose: To conduct a prospective observational study across 12 U.S. hospitals to evaluate real-time performance of an interpretable artificial intelligence (AI) model to detect COVID-19 on chest radiographs. Materials and Methods: A total of 95 363 chest radiographs were included in model training, external validation, and real-time validation. The model was deployed as a clinical decision support system, and performance was prospectively evaluated. There were 5335 total real-time predictions and a COVID-19 prevalence of 4.8% (258 of 5335). Model performance was assessed with use of receiver operating characteristic analysis, precision-recall curves, and F1 score. Logistic regression was used to evaluate the association of race and sex with AI model diagnostic accuracy. To compare model accuracy with the performance of board-certified radiologists, a third dataset of 1638 images was read independently by two radiologists. Results: Participants positive for COVID-19 had higher COVID-19 diagnostic scores than participants negative for COVID-19 (median, 0.1 [IQR, 0.0-0.8] vs 0.0 [IQR, 0.0-0.1], respectively; P < .001). Real-time model performance was unchanged over 19 weeks of implementation (area under the receiver operating characteristic curve, 0.70; 95% CI: 0.66, 0.73). Model sensitivity was higher in men than women (P = .01), whereas model specificity was higher in women (P = .001). Sensitivity was higher for Asian (P = .002) and Black (P = .046) participants compared with White participants. The COVID-19 AI diagnostic system had worse accuracy (63.5% correct) compared with radiologist predictions (radiologist 1 = 67.8% correct, radiologist 2 = 68.6% correct; McNemar P < .001 for both). Conclusion: AI-based tools have not yet reached full diagnostic potential for COVID-19 and underperform compared with radiologist prediction.Keywords: Diagnosis, Classification, Application Domain, Infection, Lung Supplemental material is available for this article.. © RSNA, 2022.

2.
JMIR Med Inform ; 9(11): e30743, 2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1523628

ABSTRACT

BACKGROUND: Studies evaluating strategies for the rapid development, implementation, and evaluation of clinical decision support (CDS) systems supporting guidelines for diseases with a poor knowledge base, such as COVID-19, are limited. OBJECTIVE: We developed an anticoagulation clinical practice guideline (CPG) for COVID-19, which was delivered and scaled via CDS across a 12-hospital Midwest health care system. This study represents a preplanned 6-month postimplementation evaluation guided by the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) framework. METHODS: The implementation outcomes evaluated were reach, adoption, implementation, and maintenance. To evaluate effectiveness, the association of CPG adherence on hospital admission with clinical outcomes was assessed via multivariable logistic regression and nearest neighbor propensity score matching. A time-to-event analysis was conducted. Sensitivity analyses were also conducted to evaluate the competing risk of death prior to intensive care unit (ICU) admission. The models were risk adjusted to account for age, gender, race/ethnicity, non-English speaking status, area deprivation index, month of admission, remdesivir treatment, tocilizumab treatment, steroid treatment, BMI, Elixhauser comorbidity index, oxygen saturation/fraction of inspired oxygen ratio, systolic blood pressure, respiratory rate, treating hospital, and source of admission. A preplanned subgroup analysis was also conducted in patients who had laboratory values (D-dimer, C-reactive protein, creatinine, and absolute neutrophil to absolute lymphocyte ratio) present. The primary effectiveness endpoint was the need for ICU admission within 48 hours of hospital admission. RESULTS: A total of 2503 patients were included in this study. CDS reach approached 95% during implementation. Adherence achieved a peak of 72% during implementation. Variation was noted in adoption across sites and nursing units. Adoption was the highest at hospitals that were specifically transformed to only provide care to patients with COVID-19 (COVID-19 cohorted hospitals; 74%-82%) and the lowest in academic settings (47%-55%). CPG delivery via the CDS system was associated with improved adherence (odds ratio [OR] 1.43, 95% CI 1.2-1.7; P<.001). Adherence with the anticoagulation CPG was associated with a significant reduction in the need for ICU admission within 48 hours (OR 0.39, 95% CI 0.30-0.51; P<.001) on multivariable logistic regression analysis. Similar findings were noted following 1:1 propensity score matching for patients who received adherent versus nonadherent care (21.5% vs 34.3% incidence of ICU admission within 48 hours; log-rank test P<.001). CONCLUSIONS: Our institutional experience demonstrated that adherence with the institutional CPG delivered via the CDS system resulted in improved clinical outcomes for patients with COVID-19. CDS systems are an effective means to rapidly scale a CPG across a heterogeneous health care system. Further research is needed to investigate factors associated with adherence at low and high adopting sites and nursing units.

SELECTION OF CITATIONS
SEARCH DETAIL